The oblique plaid effect

نویسندگان

  • Jean-Michel Hupé
  • Nava Rubin
چکیده

Plaids are ambiguous stimuli that can be perceived either as a coherent pattern moving rigidly or as two gratings sliding over each other. Here we report a new factor that affects the relative strength of coherency versus transparency: the global direction of motion of the plaid. Plaids moving in oblique directions are perceived as sliding more frequently than plaids moving in cardinal directions. We term this the oblique plaid effect. There is also a difference between the two cardinal directions: for most observers, plaids moving in horizontal directions cohere more than plaids moving in vertical directions. Two measures were used to quantify the relative strength of coherency vs. transparency: C/[C+T] and RTtransp. Those measures were derived from dynamics data obtained in long-duration trials (>1 min) where observers continually indicated their percept. The perception of plaids is bi-stable: over time it alternates between coherency and transparency, and the dynamics data reveal the relative strength of the two interpretations [Vision Research 43 (2003) 531]. C/[C+T] is the relative cumulative time spent perceiving coherency; RTtransp is the time between stimulus onset and the first report of transparency. The dynamics-based measures quantify the relative strength of coherency over a wider range of parameters than brief-presentation 2AFC methods, and exposed an oblique plaid effect in the entire range tested. There was no interaction between the effect of the global direction of motion and the effect of gratings' orientations. Thus, the oblique plaid effect is due to anisotropies inherent to motion mechanisms, not a bi-product of orientation anisotropies. The strong effect of a plaid's global direction on its tendency to cohere imposes new and important constraints on models of motion integration and transparency. Models that rely solely on relative differences in directions and/or orientations in the stimulus cannot predict our results. Instead, models should take into account anisotropies in the neuronal populations that represent the coherent percept (integrated motion) and those that represent the transparent percept (segmented motion). Furthermore, the oblique plaid effect could be used to test whether neuronal populations supposed to be involved in plaid perception display tuning biases in favor of cardinal directions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge computation in human vision: anisotropy in the combining of oriented filters.

Above threshold, two superimposed sinusoidal gratings of the same spatial frequency (eg 1 cycle deg-1) and equal contrasts, and with orientations balanced around vertical, usually look like a compound structure containing vertical and horizontal edges. However, at large plaid angles (ie large differences between component orientations) and low plaid contrasts there is a tendency for the stimulu...

متن کامل

Levels of motion perception

I shall present some new, or newish, illusions to show that motion signals in the early parts of the visual system are profoundly altered by stimulus luminance and contrast. I shall show that contrast affects: 1. Motion strength in Time till breakdown 2. Motion strength in Crossover motion 3. Speed in The Footsteps illusion 4. Direction in The Plaid-motion illusion 5. Direction: Split dots I sh...

متن کامل

Phase-reversal discrimination in one and two dimensions: Performance is limited by spatial repetition, not spatial frequency content

Lawden [(1983) Vision Research, 23, 1451-1463] used vertical gratings containing two frequencies (F, nF) in phase discrimination (F + nF against F - nF) and compound detection (F + nF against F) experiments, where thresholds were measured by manipulating the contrast of the nF component. When n was varied, Lawden found a phase-plateau of moderate breadth where phase discrimination thresholds we...

متن کامل

Perception of stationary plaids: The role of spatial filters in edge analysis

Orientation-tuned spatial filters in visual cortex are widely held to act as "orientation detectors", but our experiments on the perception of stationary two-dimensional (2-D) plaids require a new view. When two sinusoidal gratings at different orientations (say 1 c/deg, +/- 45 deg from vertical) are superimposed to form a standard plaid they do not, in general, look like two sets of oblique co...

متن کامل

Orientation processing mechanisms revealed by the plaid tilt illusion

The tilt after-effect (TAE) and tilt illusion (TI) have revealed a great deal about the nature of orientation coding of 1-dimensional (1D) lines and gratings. Comparatively little research however has addressed the mechanisms responsible for encoding the orientation of 2-dimensional (2D) plaid stimuli. A multi-stage model of edge detection has recently been proposed [Georgeson, M. A. (1998) Ima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2004